

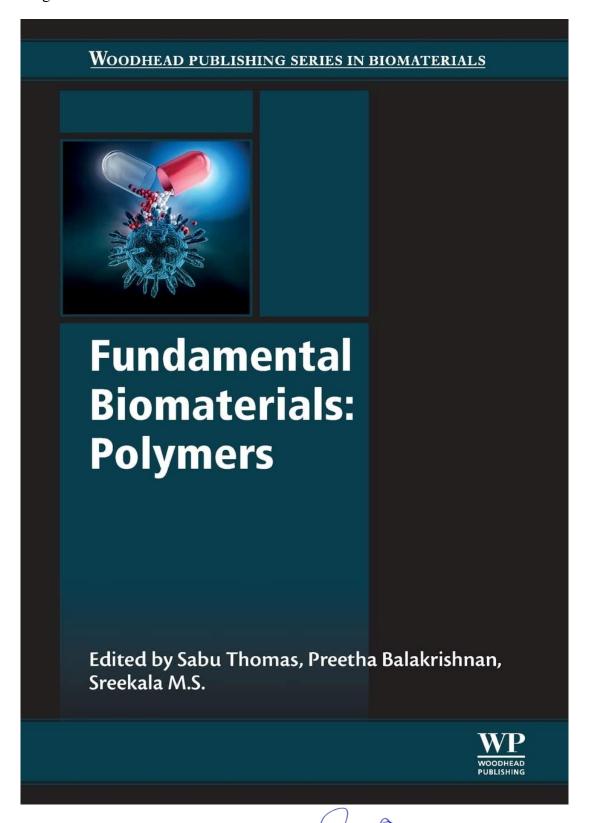
DVV Clarification

3.3.2_3 Cover page, content page and first page of the selected publication sealed and signed by the head of the institute

INDEX

Sr. No.	Content	Page. No
1	Number of books and chapters published during last five years	2
2	Cover Page, Content page, First page indicating ISBN number of	3-38
	books / chapters	

Number of Books and Chapters Published During Last Five Years


Sr. No	Name of the	Title of the book/ chapters	Year of publication	ISBN/ISS N number	Affiliating Institute at	Name of the	Page No.
•	teacher	published	•	of the proceeding	the time of publication	publisher	
1	Dr. S. V. Patil	Polymeric materials for targeted delivery of bioactive agents and drugs	2018	978-0-08- 102194-1	Shree Santkrupa College of Pharmacy, Ghogaon	Elsevier	4-8
2	Dr. S. V. Patil	Application of Lepidium sativum as an Excipient in Pharmaceuticals	2020	978-8-77- 022136-8	Shree Santkrupa College of Pharmacy, Ghogaon	River Publishers	9-13
3	Dr. S. V. Patil	Nanostructures for antimicrobial therapy	2021	978-0-12- 820569-3	Shree Santkrupa College of Pharmacy, Ghogaon	Elsevier	14- 18
4	Mr. P.D. Lade	Practical Handbook of Instrumental Methods of Analysis	2021	978-93- 921591-7-6	Shree Santkrupa College of Pharmacy, Ghogaon	Pritam Publicatio ns	19- 23
5	Dr. J. S. Mulla	Ayurvedic remedies of covid-19	2022	978-81- 956220-4-7	Shree Santkrupa College of Pharmacy, Ghogaon	Academic Decipher Press	24- 27
6	Dr. J. S. Mulla	Clarithromycin Immediate Release Tablet: Formulation and Process Validation	2022	978-61- 389696-2-4	Shree Santkrupa College of Pharmacy, Ghogaon	Scholars' Press	28-31
7	Dr. R. G. Patrakar	Practical Handbook of Herbal Drug Technology	2022	978-93- 921596-6-4	Shree Santkrupa College of Pharmacy, Ghogaon	Pritam Publicatio ns	32- 35
8	Mr. A. M. Kadam	Introduction and Need for Additive Manufacturing in the Medical Industry	2022	978-1-032- 11077-6	Shree Santkrupa College of Pharmacy, Ghogaon	CRC Press, Taylor & Francis Group	36- 39

Ghogaon Phasis & 13ell

Page 2 of 38

1. Dr. S. V. Patil

Title of the book/ chapters: Polymeric materials for targeted delivery of bioactive agents and drugs

Contents

List	of contributors	xi
1	Polymeric biomaterials: State-of-the-art and new challenges Preetha Balakrishnan, V.G. Geethamma, Meyyapallil Sadasivan Sreekala, Sabu Thomas	1
	1.1 Introduction	1
	1.2 Biodegradable polymers for biomedical applications	3
	1.3 Proteins and poly(amino acids)	7
	1.4 Polysaccharides	10
	1.5 Polymer nanomaterial for biomedical application	12
	1.6 Polymer-based biomaterials: Challenges and opportunities	13
	1.7 Conclusions and future aspects	17
	Acknowledgment	17
	References	17
	Further reading	20
2	Polymeric membranes: Classification, preparation, structure physiochemical, and transport mechanisms Ajith J. Jose, Jincymol Kappen, Muthukaruppan Alagar 2.1 Introduction 2.2 General consideration of polymeric membranes 2.3 Membrane processes and separation mechanisms 2.4 Polymer membrane preparation and structures	21 21 22 23 25
	2.5 Structure-property-performance relationships	26
	2.6 Advanced polymer membranes and their applications	28
	2.7 Biomedical applications of polymeric membranes	30
	2.8 Conclusion	32
	References	33
3	Polysaccharides as biomaterials	37
	Geeta K. Wasupalli, Devendra Verma	•
	3.1 Introduction	38
	3.2 Types of polysaccharides	39
	3.3 Modifications of polysaccharide	46
	3.4 Forms of polysaccharides	48
	3.5 Applications	58

Principal
Dr. Ramling G. Patraka

Principal

Dr. Ramling G. Patrakar

Shree Santkrupa College of Pharmacy
Ghogaon, Tal. Karad, Dist. Satara

Copyrighted material

viii Contents

11	Polymeric materials for targeted delivery of bioactive	
	agents and drugs	249
	Sachinkumar V. Patil, Sardar S. Shelake, Shitalkumar S. Patil	
	11.1 Introduction	249
	11.2 Factors influencing biodegradation of polymers	251
	11.3 Recombinant polymers for drug delivery	253
	11.4 Polymer characterization techniques	253
	11.5 Bioactive agents	254
	11.6 Targeted drug-delivery system	254
	11.7 Polymeric materials in pharmaceutical drug delivery	255
	11.8 General mechanisms of drug release from polymer.	256
	11.9 Polymeric materials used for the targeted drug-delivery system	257
	11.10 Conclusion	263
	11.11 Future outlook	263
	References	264
12	Medical grade biodegradable polymers: A perspective	
	from gram-positive bacteria	267
	Swati Misra, A.K. Srivastava, Shailendra Raghuwanshi,	
	Varsha Sharma, P.S. Bisen	
	12.1 Introduction	267
	12.2 Biodegradable plastics	268
	12.3 Microorganisms involved in PHB production	269
	12.4 Metabolic pathway involved in PHA production	269
	12.5 Recent developments in the bioplastic market	270
	12.6 Use of renewable raw materials for PHB production	273
	12.7 Applications of PHB in the biomedical sector	276
	12.8 Conclusions and future outlook	280
	Acknowledgments	281
	References	281
13	Investigation of wear characteristics of dental composites filled	
	with nanohydroxyapatite and mineral trioxide aggregate	287
	Anoj Meena, Harlal S. Mali, Amar Patnaik, Shiv Ranjan Kumar	
	13.1 Introduction	287
	13.2 Materials and methods	288
	13.3 Result and discussion	290
	13.4 Conclusion	303
	References	304
14	Biodegradable superabsorbents: Methods of preparation	
	and application—A review	307
	Sweta Sinha	
	14.1 Introduction	307
	14.2 SAB hydrogels: The most effective application of cross-linked	
	biopolymers	308

Copyrighted material

Polymeric materials for targeted delivery of bioactive agents and drugs

Sachinkumar V. Patil*, Sardar S. Shelake[†], Shitalkumar S. Patil[†]

*Shree Santkrupa College of Pharmacy, Karad, India, [†]Ashokrao Mane College of Pharmacy, Kolhapur, India

Abstract

In recent years, the application of polymeric materials for a targeted drug-delivery system has been greatly advanced. Since polymeric materials played a crucial role in the targeted drug-delivery technology, the selection of such materials is very important in formulation and development. Polymeric materials used as components of the drug-delivery system should not be toxic and must have the desired essential properties required for such developments. Nowadays, research is much focused on the targeted drug-delivery system as it will deliver a medication to the patient with increase in the concentration in some parts of the body relative to others. Thus, such a drug-delivery system is largely founded on polymer-mediated drug delivery in order to combat the downfalls of conventional drug delivery. The selected polymeric material will bind with drugs and target specific parts of the body where there is solely diseased tissue, thereby avoiding interaction with healthy tissue. The aim of a targeted drug-delivery system is to prolong, localize, target, and have a protected drug interaction with the diseased tissue. However, for optimization in the formulation and development of a targeted drug-delivery system, selection of polymeric materials plays a significant role. Various types of polymeric materials were used for the same. Such polymeric materials will be classified as per site of targeting and properties of the polymeric materials. The present chapter intends to focus on various polymeric materials used for targeted delivery of bioactive agents and drugs.

Keywords: Polymeric materials, Targeted drug-delivery system, Bioactive agents and drugs, Drug-delivery system.

11.1 Introduction

A polymer is a large molecule, macromolecule, composed of many repeated subunits. Owing to their broad range of properties, both synthetic and natural polymers play an essential and ubiquitous role in every day of life. The term "polymer" derives from the ancient Greek word (polus, meaning "many, much") and (meros, meaning "parts"), and refers to a molecule whose structure is composed of multiple repeating units, from which originate a characteristic of high relative molecular mass and attendant properties. The units composing polymers derive, actually or conceptually, from molecules

Fundamental Biomaterials: Polymers. https://doi.org/10.1016/B978-0-08-102194-1.00011-6 Copyright © 2018 Elsevier Ltd. All rights reserve d.

Woodhead Publishing is an imprint of Elsevier
The Officers' Mess Business Centre, Royston Road, Duxford, CB22 4QH, United Kingdom
50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States
The Boulevard, Langford Lane, Kidlington, OX5 1GB, United Kingdom

Copyright © 2018 Elsevier Ltd. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

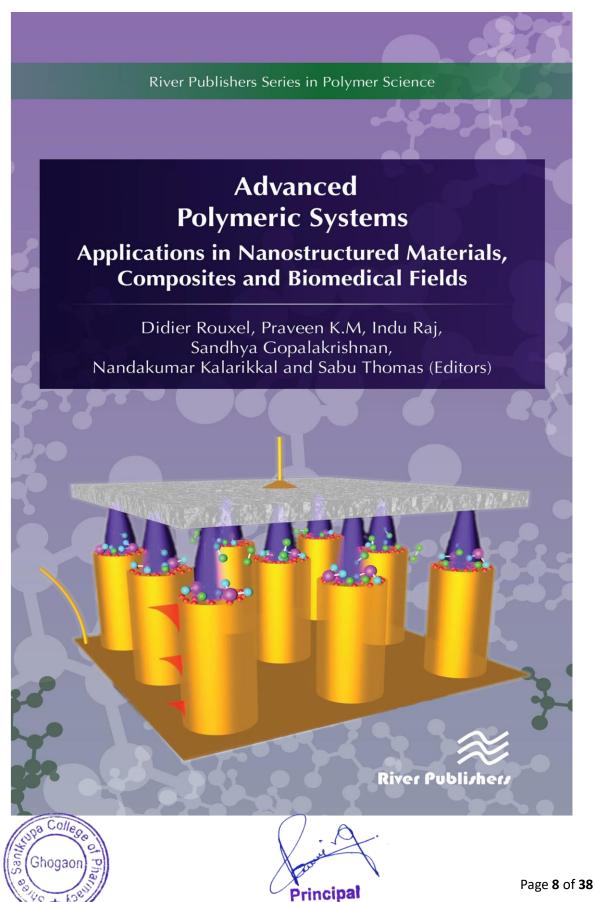
A catalogue record for this book is available from the British Library

ISBN: 978-0-08-102194-1 (print) ISBN: 978-0-08-102195-8 (online)

For information on all Woodhead publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisition Editor: Gwen Jones

Editorial Project Manager: Thomas Van Der Ploeg Production Project Manager: Sreejith Viswanathan


Cover Designer: Greg Harris Typeset by SPi Global, India

Principal

2. Dr. S. V. Patil

Title of the book/ chapters: Application of Lepidium sativum as an Excipient in Pharmaceuticals

Contents

Pr	eface			X111
Li	st of C	ontribut	ors	xvii
Li	st of F	igures		xxi
Li	st of T	ables		xxvii
Li	st of A	bbreviat	tions	xxix
I	Nan	ostructı	ured Materials for Energy Applications	1
1	Ther	mal Ene	Enhanced Organic Phase Change Materials for ergy Storage Applications arajan and Asit B. Samui	3
	1.1		ction	4
		1.1.1	Types of PCM	
		1.1.2	Physical Form of PCM	
	1.2	Inorgan	ic Nanocomposites	
	1.3		Nanoparticles	
	1.4		Nanocomposites	
		1.4.1	Carbon Fibre	13
		1.4.2	Carbon Nanospheres (CNS)	13
		1.4.3	Carbon Nanotubes (CNT)	13
		1.4.4	Multiwall Carbon Nanotubes (MWCNT)	15
		1.4.5	Single-walled Carbon Nanotubes (SWCNT)	15

				Contents	ix
			Infrared Spectroscopy		106
			Proton (¹ H) Nuclear Magnetic Resonance		107
			Spectroscopy		107
	6.5		Thermal Analysis		108 110
		rences	ons		110
	Kelei	ences			110
7	Appl	ication of	Lepidium sativum as an Excipient in		
	Phar	maceutica	ls		113
	S. V.		Shelake, S. V. Patil and S. S. Patil		
	7.1		on		114
	7.2	Material a	and Methods		116
			Materials		116
			Methods of Formulation		116
			Experimental Work		119
	7.3	Result and	d Discussion		123
	7.4	Conclusio	ons		132
	Refer	rences			132
8	Role				
8		of Polyhyo	droxyalkanoates (PHA-biodegradable Poly		135
8	in Fo	of Polyhyo od Packag	droxyalkanoates (PHA-biodegradable Poly ging		135
8	in Fo	of Polyhyo od Packag shek Dutt T	droxyalkanoates (PHA-biodegradable Poly ging Tripathi, Simmie Sebstraien,		135
8	in Fo Abhi: Kami	of Polyhyo od Packag shek Dutt T lesh Kumar	droxyalkanoates (PHA-biodegradable Poly ging		135
8	in Fo Abhi: Kami	of Polyhyo od Packag shek Dutt T esh Kumar kar Khade	droxyalkanoates (PHA-biodegradable Poly ging ripathi, Simmie Sebstraien, · Maurya, Suresh Kumar Srivastava,	mer)	135 135
8	in Fo Abhi: Kami Shan	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introducti	droxyalkanoates (PHA-biodegradable Polyging Fripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan	ymer)	
8	in Fo Abhi: Kami Shan 8.1	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introductio Productio	droxyalkanoates (PHA-biodegradable Polyging Fripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion	ymer)	135
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T esh Kumar kar Khade Introducti Productio Character	droxyalkanoates (PHA-biodegradable Polyging Fripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion	ymer)	135 139 145
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introductio Productio Character 8.3.1	droxyalkanoates (PHA-biodegradable Polyging Tripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion	(mer)	135 139
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introductio Productio Character 8.3.1 3 8.3.2	droxyalkanoates (PHA-biodegradable Polyging Tripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion isation and Identification Spectrophotometric Methods	(mer)	135 139 145 145
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introductio Productio Character 8.3.1 5 8.3.2 1 8.3.3 1	droxyalkanoates (PHA-biodegradable Polyging Tripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion isation and Identification Spectrophotometric Methods Infrared Spectroscopy High-Performance Liquid Chromatography	ymer)	135 139 145 145
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T esh Kumar kar Khade Introductio Productio Character 8.3.1 \$ 8.3.2 \$ 8.3.3 \$	droxyalkanoates (PHA-biodegradable Polyging Tripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion ion issation and Identification Spectrophotometric Methods Infrared Spectroscopy High-Performance Liquid Chromatography (HPLC)	ymer)	135 139 145 145 146
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introductio Character 8.3.1 S 8.3.2 D 8.3.3 D	droxyalkanoates (PHA-biodegradable Polyging Fripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion in issation and Identification Spectrophotometric Methods Infrared Spectroscopy High-Performance Liquid Chromatography (HPLC) Gas Chromatography-Mass Spectrometry	ymer)	135 139 145 145 146
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introductio Character 8.3.1 3 8.3.2 3 8.3.3 1	droxyalkanoates (PHA-biodegradable Polyging Tripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion isation and Identification Spectrophotometric Methods Infrared Spectroscopy High-Performance Liquid Chromatography (HPLC) Gas Chromatography-Mass Spectrometry (GC-MS)	ymer)	135 139 145 145 146
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introductio Character 8.3.1 \$ 8.3.2 \$ 8.3.3 \$ (8.3.4 (6) 8.3.5 \$	droxyalkanoates (PHA-biodegradable Polyging Tripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion issation and Identification Spectrophotometric Methods Infrared Spectroscopy High-Performance Liquid Chromatography (HPLC) Gas Chromatography-Mass Spectrometry (GC-MS)	ymer)	135 139 145 145 146 147
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T esh Kumar kar Khade Introductio Character 8.3.1 S 8.3.2 S 8.3.2 S 8.3.4 (8.3.5 S 8.3.6 I	droxyalkanoates (PHA-biodegradable Polyging Fripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion issation and Identification Spectrophotometric Methods Infrared Spectroscopy High-Performance Liquid Chromatography (HPLC) Gas Chromatography-Mass Spectrometry (GC-MS) NMR Spectroscopy Flow cytometry and Spectrofluorometry	ymer)	135 139 145 145 146 147
8	in Fo Abhi: Kami Shan 8.1 8.2	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introductio Character 8.3.1 8 8.3.2 0 8.3.3 0 (8.3.4 0 (8.3.5 1 8.3.6 1 8.3.7 8	droxyalkanoates (PHA-biodegradable Polyging Fripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion issation and Identification Spectrophotometric Methods Infrared Spectroscopy High-Performance Liquid Chromatography (HPLC) Gas Chromatography-Mass Spectrometry (GC-MS) NMR Spectroscopy Flow cytometry and Spectrofluorometry Staining Reactions and Microscopy	ymer)	135 139 145 145 146 147 147 147
8	in Fo Abhi: Kami Shan: 8.1 8.2 8.3	of Polyhyo od Packag shek Dutt T lesh Kumar kar Khade Introductio Character 8.3.1 \$ 8.3.2 \$ 8.3.3 \$ 8.3.4 \$ (8.3.5 \$ 8.3.6 \$ 8.3.7 \$ Extraction	droxyalkanoates (PHA-biodegradable Polyging Fripathi, Simmie Sebstraien, Maurya, Suresh Kumar Srivastava, and Kundan ion issation and Identification Spectrophotometric Methods Infrared Spectroscopy High-Performance Liquid Chromatography (HPLC) Gas Chromatography-Mass Spectrometry (GC-MS) NMR Spectroscopy Flow cytometry and Spectrofluorometry	(mer)	135 139 145 145 146 147 147 147 147

Application of Lepidium sativum as an Excipient in Pharmaceuticals

S. V. Sutar¹, S. S. Shelake², S. V. Patil³ and S. S. Patil²

²Department of Pharmaceutics, Ashokrao Mane College of Pharmacy, Peth-Vadgaon, Hatkanangale, Kolhapur, 416112, Maharashtra, India ³Department of Pharmaceutics, Shree Santkrupa College of Pharmacy, Ghogaon, Karad, Satara, 415111, Maharashtra, India

Various types of plant mucilage available like alginic acid, gelatin maize starch and potato starch have been used as a binder in pharmaceutical formulation. But still finding a novel binder is useful in the pharmaceutical industry for manufacturing tablets. Lepidium sativum was chosen for its binding property. Aspirin and ibuprofen tablets were prepared by wet granulation technique using Lepidium sativum as a tablet binder. The prepared tablets were evaluated for physiochemical characteristics, and the binding efficacy of the Lepidium sativum was compared with the standard binder mucilage polyvinyl pyrrolidine (PVP) at similar concentration (3% w/w), 27.16° to 28.45° angle of repose and 0.46-0.46% w/w friability 1.2 to 12.03 min disintegration time. Tablets at 3% w/w binder concentration showed more optimum results as tablet binder. Lepidium sativum was found to be useful for the preparation of uncoated tablet dosage form. Lepidium sativum can be an alternative binder for the pharmaceutical formulations. Abundant availability, food grade status, economic feasibility, commercial suitability and reliability make the mucilage an alternative for the existing synthetic excipients.

Ghogaon P

113

Principal

¹Department of Pharmaceutical chemistry, Ashokrao Mane College of Pharmacy, Peth-Vadgaon, Hatkanangale, Kolhapur, 416112, Maharashtra, India

Published 2020 by River Publishers

River Publishers Alsbjergvej 10, 9260 Gistrup, Denmark www.riverpublishers.com

Distributed exclusively by Routledge

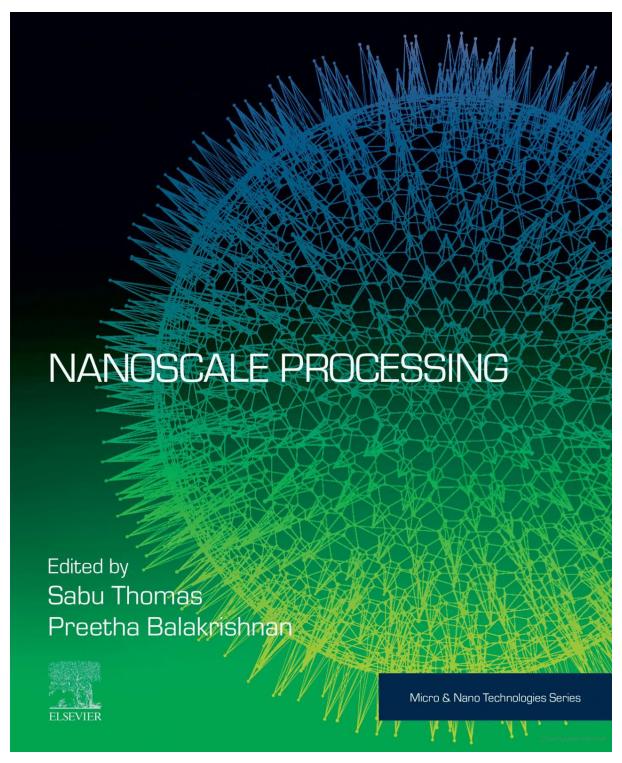
4 Park Square, Milton Park, Abingdon, Oxon OX14 4RN 605 Third Avenue, New York, NY 10017, USA

Advanced Polymeric Systems: Applications in Nanostructured Materials, Composites and Biomedical Fields/by Didier Rouxel, K. M. Praveen, Indu Raj, Sandhya Gopalakrishnan, Nandakumar Kalarikkal, Sabu Thomas.

© 2020 River Publishers. All rights reserved. No part of this publication may be reproduced, stored in a retrieval systems, or transmitted in any form or by any means, mechanical, photocopying, recording or otherwise, without prior written permission of the publishers.

Routledge is an imprint of the Taylor & Francis Group, an informa business

DOI: 10.1201/9781003337058


ISBN 978-87-7022-136-8 (print)

While every effort is made to provide dependable information, the publisher, authors, and editors cannot be held responsible for any errors or omissions.

Ghogaon Phase Solves April 198

3. Dr. S. V. Patil

Title of the book/ chapters: Nanostructures for antimicrobial therapy

Contents

Contributorsxvii			
CHAPTER 1	Basic concepts and processing of nanostructures materials		
	Nanostructures materials1Nanostructures of TiO_2 materials52.1 Nanoparticles82.2 Nanorods92.3 Nanotubes11		
	Nanostructures materials synthesis133.1 Template synthesis method133.2 Electrochemical anodization143.3 Hydrothermal method16		
	Hydrothermal method for preparation		
CHAPTER 2	Nanomaterials: Synthesis, physicochemical characterization, and biopharmaceutical applications		
	characterization, and biopharmaceutical applications		
1	characterization, and biopharmaceutical applications		

6	Photocatalysis	349
	6.1 Mechanism	350
	6.2 Experimental setup for photocatalytic	
	degradation	352
	6.3 Results of some composites-based photocatalysts	
7	Conclusion	
	Acknowledgments	355
	References	
CUADTED 12	Nanostructures for antimicrobial therapy	261
CHAPTER 13	• • • • • • • • • • • • • • • • • • • •	. 301
	Sameer J. Nadaf, Sandip A. Bandgar, Indrayani	
	D. Raut, Sachinkumar V. Patil, Suresh G. Killedar, and	
	Shitalkumar S. Patil	
1	Introduction	362
2	Nanoparticles against microbes	363
3	Metal nanoparticles	364
	3.1 Silver nanoparticles	364
	3.2 Gold nanoparticles	366
4	Metal oxide nanoparticles	370
	4.1 Aluminum oxide nanoparticles	370
	4.2 Zinc oxide (ZnO) nanoparticles	370
	4.3 Titanium dioxide nanoparticles	371
	4.4 Copper oxide nanoparticles	371
	4.5 Magnesium oxide nanoparticles	
5	Characterization of NPs	372
	5.1 Morphological/topological characterization	372
	5.2 Structural and surface characterization	372
	5.3 Chemical characterization	372
	5.4 Elemental characterization	375
	5.5 Particle size characterization	375
	5.6 Surface area determination	375
6	Biomedical applications of antimicrobial NPs	375
	6.1 Wound healing	
	6.2 Dental implants	375
	6.3 Bone healing	375
	6.4 Medical devices	376
7	Conclusion	376
	References	376

Principal Patraka

Copyrighted material

Nanostructures for antimicrobial therapy

13

Sameer J. Nadaf^a, Sandip A. Bandgar^b, Indrayani D. Raut^c, Sachinkumar V. Patil^d, Suresh G. Killedar^a, and Shitalkumar S. Patil^b

^aSant Gajanan Maharaj College of Pharmacy, Mahagaon, Maharashtra, India ^bAshokrao Mane College of Pharmacy, Peth-Vadgaon, Maharashtra, India ^cRajarambapu College of Pharmacy, Kasegaon, Maharashtra, India ^dShree Santkrupa College of Pharmacy, Ghogaon, Maharashtra, India

Chapter outline

1	Introduction	362
2	Nanoparticles against microbes	363
	Metal nanoparticles	
	3.1 Silver nanoparticles	
	3.2 Gold nanoparticles	
4	Metal oxide nanoparticles	
	4.1 Aluminum oxide nanoparticles	
	4.2 Zinc oxide (ZnO) nanoparticles	
	4.3 Titanium dioxide nanoparticles	
	4.4 Copper oxide nanoparticles	
	4.5 Magnesium oxide nanoparticles	
5	Characterization of NPs	
	5.1 Morphological/topological characterization	372
	5.2 Structural and surface characterization	
	5.3 Chemical characterization	
	5.4 Elemental characterization	
	5.5 Particle size characterization	
	5.6 Surface area determination	
6	Biomedical applications of antimicrobial NPs	
_	6.1 Wound healing	
	6.2 Dontal implants	375

Nanoscale Processing. https://doi.org/10.1016/B978-0-12-820569-3.00013-X © 2021 Elsevier Inc. All rights reserved.

Principal

Principal

Principal

Elsevier

Radarweg 29, PO Box 211, 1000 AE Amsterdam, Netherlands The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, United Kingdom 50 Hampshire Street, 5th Floor, Cambridge, MA 02139, United States

© 2021 Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.

This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods, professional practices, or medical treatment may become necessary.

Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information, methods, compounds, or experiments described herein. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.

To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data
A catalog record for this book is available from the Library of Congress

British Library Cataloguing-in-Publication Data

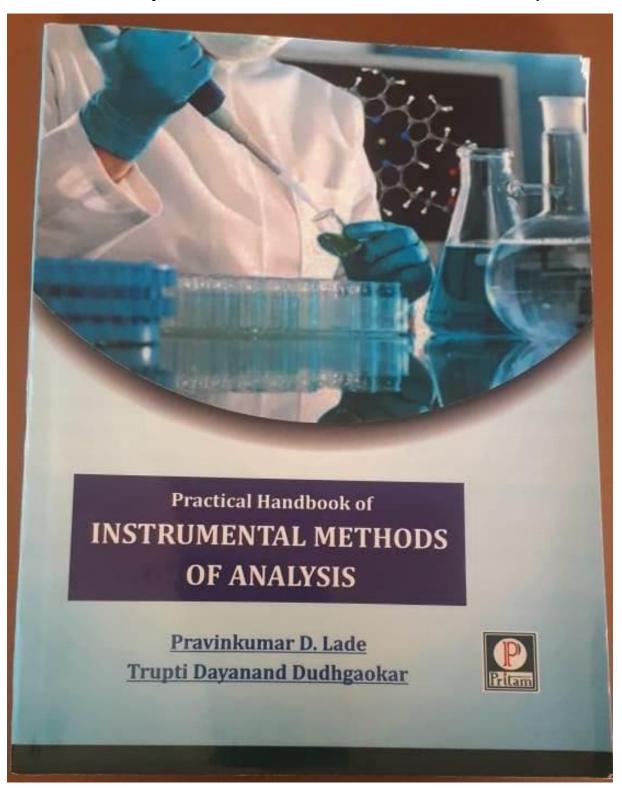
A catalogue record for this book is available from the British Library

ISBN: 978-0-12-820569-3

For information on all Elsevier publications visit our website at https://www.elsevier.com/books-and-journals

Publisher: Matthew Deans Acquisitions Editor: Simon Holt Editorial Project Manager: John Leonard Production Project Manager: Prasanna Kalyanaraman Cover Designer: Greg Harris

Typeset by SPi Global, India



Principal Patral

4. Mr. P.D. Lade

Title of the book/ chapters: Practical Handbook of Instrumental Methods of Analysis

Practical Handbook of

INSTRUMENTAL METHODS OF ANALYSIS

As per PCI Regulation
FINAL YEAR B. PHARM
Semester -VII

PRAVINKUMAR D.LADE

(M.Pharm)
Assistant professor
Department of pharmaceutical chemistry
Shree santkrupa college of pharmacy,
Ghogaon

TRUPTI DAYANAND DUDHGAONKAR

(M.Pharm)
Assistant professor
Department of Pharmacognosy
Rajarambapu college of pharmacy,
Kasegaon

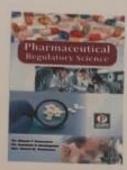
PRITAM PUBLICATIONS

Principal

Dr. Ramling G. Patrakar Shree Santkrupa College of Pharmacy Ghogaon, Tal. Karad, Dist. Satara Page **19** of **38**

CONTENTS

Sr. No.	Title of Experiments	No.
1	Determination of Amax by using colorimeter.	1
2	Estimation of Dextrose by Colorimetry.	4
3	Estimation of Sulfanilamide by Colorimetry.	7
4	Calibration of UV spectrophotometer.	9
5	Spectrophotometric estimation of Paracetamol.	12
6	Simultaneous estimation of Ibuprofen and Paracetamol by U spectroscopy.	15
7	Estimation of Quinine sulfate by Fluorimetry.	19
8	Determination of turbidity of a given sample of barium su	lphate. 2


Principal

5	Determination of Sodium Concentration by using Flame Photometer.	23
10	Determination of Potassium Concentration by using Flame Pho- tometer.	26
11	Qualitative analysis of given sample (Lysine) by Paper Chromatog- raphy.	28
12	Qualitative analysis of given sample (Glycine) by Paper Chromatog. raphy.	30
13	Qualitative analysis of given sample (Dextrose) by Thin Layer Chromatography.	32
14	Qualitative analysis of given sample (Maltose, Fructose) by Thin Layer Chromatography.	35
15	To separate and identify the sample of mixture by Column Chromatography.	38
16	Demonstration to High Performance Liquid Chromatography.	41
7	Demonstration to Gas Chromatography.	52
3	Reference	6:

Principal

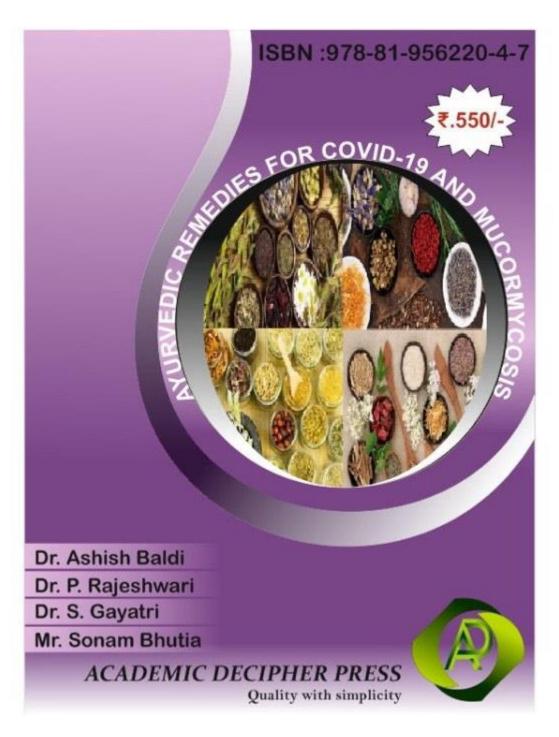
Our Other Useful Books for Pharmacuitical Sciences

Pritam Publications

Publishers of Scholarly Books & International Research Journals

Near Jain Temple, Dadawadi, NH-6, Jaigaon-425001 (M. 5.), India Mob. 9850222351

Website: www.Pritampublication.com Email: pritampublications@gmail.com



Principal

5. Dr. J. S. Mulla

Title of the book/ chapters: Ayurvedic remedies of covid-19

ACADEMIC DECIPHER PRESS, MUMBAI

CHAPTER NUMBER	AUTHORS OF THE CHAPTER	PAGE NUMBER
1	DR. GAYATRI SUKUMARAN, DR. CHITRA KRISHNAN, MS. PAVITHRA BHARATHY, MS. INDUJA RAMESH, MS. PREETHI MULLAIVENDAN	1
2	MR. ANBARASAN BALU, MS. DR. CHITRA KRISHNAN, MR. ROHIT JAIN RAJENDRA, MS. PAVITHRA SUGUMAR, MS. PAVITHRA KRISHNAMOORTHY BASKARAN	15
3	MS. HAWI MATEWOS DAKA, DR.P.RAJESHWARI, DR. G. CHAKRAVARTHI	32
4	DR. JAMEEL AHMED S. MULLA, DR. VIJAYANAND R. ARALELIMATH, JYOTI DADASAHEB MALI, VIDYA ASHOK KHERADKAR, RUTUJA VINAYAK YADAV	49
5	DR. VAIBHAV VAIDYA, DR. N. S. VYAWAHARE, MR. YOGESH JADHAO, MR. VAIBHAV GADVE, MS. SHITAL RATHOD	67
6	DR. RUKHSANA RUB, MS. RIYA PENDAM, MR. NIHAL JAGTAP, MR. SHARDUL JANGAM	84
7	DR. JAYSHREE TAKSANDE, DR. MILIND UMEKAR, MS. BHARATI GONDANE, MS. JYOTSANA PARADKAR, MS. SNEHA GAURKAR	107
8	DR. MADHURI PATIL DR. CHANDRASHEKHAR MURUMKAR, SHRUTI TAPRE, POOJA JANA, VAISHALI JAIN	122
9	DR. ZEENAT IQBAL, PROF. (DR.) ASGAR ALI, MS. NAZIA HASSAN, MS. POOJA JAIN, MR. THOMSON ALEX	129
10	MRS. MANISHA JADAV, KINNARI PATEL, MAITRI PATEL, SRUSHTI PATEL	138
11	MRS. ARPNA INDURKHYA, DR. GAURAVKANT SARAOGI, MR. MAHENDRA PATEL, NITESH PATIDAR, SNEHA KOTHARI, ANKIT PATIDAR	145
12	MR. MAYURESH RAUT, MR. VAIBHAV BASVANTI, MR. ROHAN MAHAJAN, MR. AKASH SALVE	157

Principal

Page **24** of **38**

AYURVEDIC REMEDIES OF COVID-19

Dr. Jameel Ahmed S. Mulla*, Dr. Vijayanand R. Aralelimath, Jyoti Dadasaheb Mali, Vidya Ashok Kheradkar, Rutuja Vinayak Yadav Shree Santkrupa College of Pharmacy Ghogaon, Karad, Maharashtra, India jameelahmed5@gmail.com, 9845463472

ABSTRACT

COVID-19 has quickly spread across the globe, becoming a pandemic. The main objective of the present study was to prepare Ayurvedic remedies of Covid -19. The novel coronavirus disease 2019 (COVID-19) is a pandemic health emergency, caused by the severe acute respiratory syndrome corona virus-2, COVID 19 the novel coronavirus enters the host cell (Human) through its surface spike proteins and then it attaches to the angiotensin-converting enzyme -2(ACE-2) receptor which is most abundant on the surface of type II alveolar cells of the lungs. The Indian system of holistic medicine is known as "Ayurveda". Ayurveda has its origin in two Sanskrit words; Ayuh meaning life and veda meaning knowledge. Ayurveda provides a basic way of living to the people. In day-to-day life, Ayurveda plays an important role in controlling the viral disease SARS-CoV-2 and health disorders. Ayurveda therapies improve the immunity of humans. Dietary supplements, herbal therapies and herbal medicines could be a complementary preventive therapy for COVID-19(SARS-CoV-2). Some herbs show antiviral activity against coronavirus. Ayurveda has specialties such as treatments, herbs and medicines to recover covid 19:

Yoga and Rajayakshma chikitsa, etc (treatments) are discussed. Ashwagandha, Haridra, Guduchi, Tulsi, etc (herbs) used to cure. The study aims to review ancient classical literature and past human treatment protocols of Ayurveda for the prevention and treatment of infectious diseases like COVID-19.

INTRODUCTION

China has reported cases pneumonia in Wuhan city in late December 2019 [1]. On 11 Feb 2020 World Health Organization (WHO) named pneumonia originated in Wuhan as Coronavirus Disease-2019 (COVID-19) [1,2]. The coronavirus disease (Covid -19) has challenged health care organizations across the globe. The World Health Organization (WHO) is constantly monitoring and updating the information available regarding its spread, mortality, and morbidity. The pathogen coronavirus belongs to a virus family which causes severe acute respiratory syndrome (SARS-Cov-2) [2]. COVID 19 the novel coronavirus enters the host cell (Human) through its surface spike proteins and then it attaches to the angiotensin-converting enzyme -2(ACE-2) receptor which is most abundant on the surface of type II alveolar cells of the lungs [2,3].

AYURVEDIC REMEDIES FOR COVID-19 AND MUCORMYCOSIS

Principal

Parling G. Patraki

Published by Academic Decipher Press, Mumbai Website:https://academicdecipher.in/ WhatsApp No.:7400253569 Email: admin@academicdecipher.in, academicdecipher.in@gmail.com

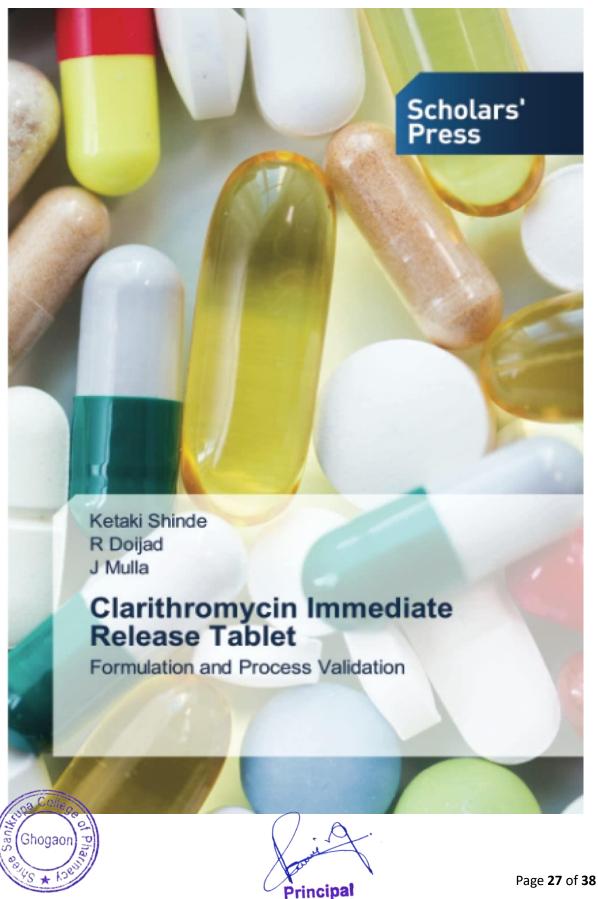
© Copyrights reserved

The text of this publication or any part thereof should not be copied, reduced, used, photocopied or transmitted in any language or stored in any information storage device including but not limited to computer, laptop, CD, pen drive, hard disc, email drive, mobile, etc for distribution or use without prior permission of the publisher, editors and authors. Breach of this condition is liable to legal action.

Edition: Mar 2022

Price: Rs.550/-

ISBN: 978-81-956220-4-7


Every effort has been made to avoid the errors in this publication. In spite of this the errors may have crept in. Any mistake, error or discrepancy so noted and shall be brought to our notice will be taken care in next edition. The publisher take no responsibility with regards to the accuracy of information contained in this book and cannot accept any legal responsibility of any errors or omissions.

Exclusively marketed & distributed by Academic Decipher Press, Mumbai. For sale in India and abroad.

6. Dr. J. S. Mulla

Title of the book/ chapters: Clarithromycin Immediate Release Tablet: Formulation and Process Validation

Ketaki Shinde R Doijad J Mulla

Clarithromycin Immediate Release Tablet

Formulation and Process Validation

FORAUTHORUSEOMIX

Scholars' Press

Clarithromycin Immediate Release Tablet

Quality cannot be assured only by doing finished product testing and inprocess monitoring; it should be built into the manufacturing process. As a result, quality construction necessitates special attention to a few factors such as material selection, process design, control variables, inprocess control, and finished product testing. In this study, three initial batches of Clarithromycin tablets with the same size, method, equipment, and validation criteria were taken. Various critical parameters during dry mixing, wet granulation, drying, lubrication, and compression were identified and evaluated as per the validation protocol. The results of the whole process show that process validation data gives a high level of confidence that the manufacturing process will produce a product that meets its predetermined specification and quality attributes.

Mrs. Ketaki Shinde M Pharm (QAT) Lecturer Shri Santkrupa Shikshan Sanstha's College of Pharmacy, Ghogan Tq. Karad, Dist.- Satara, Maharashtra, India Specialization in Quality Assurance Techniques of pharmaceutical products.

wpa College

Ghogaon

Copyrighted Material

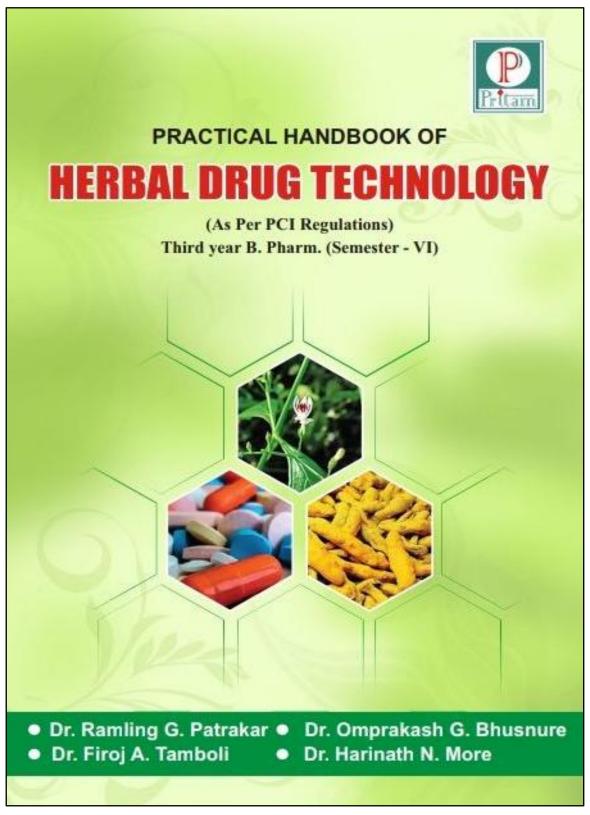
Principal Princi Dr. Ramling G. Patrakar Shree Santkrupa College of Pharmacy Ghogaon, Tal. Karad, Dist. Satara Page 29 of 38

Imprint

Any brand names and product names mentioned in this book are subject to trademark, brand or patent protection and are trademarks or registered trademarks of their respective holders. The use of brand names, product names, common names, trade names, product descriptions etc. even without a particular marking in this work is in no way to be construed to mean that such names may be regarded as unrestricted in respect of trademark and brand protection legislation and could thus be used by anyone.

Cover image: www.ingimage.com

Publisher:
Scholars' Press
is a trademark of
Dodo Books Indian Ocean Ltd., member of the OmniScriptum S.R.L
Publishing group
str. A.Russo 15, of. 61, Chisinau-2068, Republic of Moldova Europe
Printed at: see last page


ISBN: 978-613-8-96962-4

Copyright © Ketaki Shinde, R Doijad, J Mulla Copyright © 2022 Dodo Books Indian Ocean Ltd., member of the OmniScriptum S.R.L Publishing group

7. Dr. R. G. Patrakar

Title of the book/ chapters: Practical Handbook of Herbal Drug Technology

Principal

Dr. Ramling G. Patrakar

Shree Santkrupa College of Pharmacy
Ghogaon, Tal. Karad, Dist. Satara

Page **31** of **38**

PRACTICAL HANDBOOK

HERBAL DRUG TECHNOLOGY

(As Per PCI Regulations) Third Year B. Pharm. (Semester - VI)

Dr. Ramling G. Patrakar Associate Professor and Head

Department of Pharmacognosy Shree Santkrupa College of Pharmacy, Ghogaon, Maharashtra.

Dr. Omprakash G. Bhusnure

Professor and Head Deptt. of Pharmaceutical Quality Assurance Channabasweshwar Pharmacy College, Latur, Maharashtra.

Dr. Firoj A. Tamboli

Head of Department Department of Pharmacognosy Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra. Kolhapur, Maharashtra.

Dr. Harinath N. More

Professor and Principal Bharati Vidyapeeth College of Pharmacy,

PRITAM PUBLICATIONS

Principal

CONTENTS

Sr. No.	Title of the Experiment	Page No.
1	To carry out the qualitative phytochemical screening of crude drugs	1
2	To determine the alcohol content of Arishta and Asava	7
3	To isolate and evaluate the excipient of natural origin	10
4	To prepare and evaluate the Herbal Cold Cream	17
5	To prepare and evaluate the Herbal Shampoo	20
6	To prepare and evaluate the Herbal Sunscreen Lotion	24
7	To prepare and evaluate the Herbal Cough Syrup	27
8	To prepare and evaluate the Herbal Mixture	30
9	To prepare and evaluate the Herbal Tablets	32
10	To determine the total alkaloids in a given crude drug	35
11	To determine the phenol content of a given crude drug	37
12	To determine the aldehyde content in lemon oil	40
13	To study the monograph analysis of herbal drugs from Indian Pharmacopoeia	41
14	To study the monograph analysis of herbal drugs from Siddha Pharmacopoeia	51
	References	60

Principal

About Authors

Or. Ramiling G. Patrakar at Name, A. 2. is presently working as an Associate professor and Head of the Pharmacognosy department at Shree Santkrupa College of Pharmacy, Ghogaon. He has completed his M. Pharmacy from J.S.5 College of Pharmacy, Ooty, Tamilnadu and Ph.D. from SRTMU, Nanded. He has more than 15 years of teaching and research experience. He has contributed 15 papers in National and International journals. He has attended more than 30 National and international conferences. He has successfully completed the course on IPR conducted by WIPO Worldwide Academy, Geneva in 2008.

Dr. Omprakash G. Bhusnure A. Hern, N.D. is presently working as Professor and Head, Department of Pharmaceutical Quality Assurance at Channabasweshwar Pharmacy College, Latur. He has more than 22 years of teaching and research experience. He is presently a member of BOS and BOE at SRTMU, Nanded. He has guided a total 65 M. Pharm and 8 Ph.D. research scholars. Recently, 2 Ph.D. students have been awarded under his guidance. He has published 3 books and 93 papers in National and International journals of repute. He has also published 9 patents out of which 1 patent is granted. He has received 14 awards in poster and oral presentation in various National and International conferences. He is a life member of IPA and APTI.

Dr. Firoj A. Tamboli M. Name, No. D. is a Head, Department of Pharmacognosy, Bharati Vidyapeeth College of Pharmacy, Kolhapur, Maharashtra, India who received his Ph.D. degree in Pharmacy from the Shivaji University, Kolhapur. He has more than 22 years of teaching and research experience. He has guided a number of postgraduate students with more than sixty publications in National and International refereed journals. He has fetched many project grants from AICTE. He is having professional experience as Comvener/Chief Coordinator/ Chair/ Co-chair/ Member Scientific Committee / Resource Person/ Referee to evaluate etc. in FDPs/ Conferences/ Seminars/ Workshops in Pharmacy. He is a Life Member of APTI. He serves as an Editorial board member of more than 15 National and International refereed journals. He isthe recipient of the Faculty of the year award, by vmedulife software services Pune, Best researcher award, by VDGOOD Professional Association Ooty, India.

Dr. Harinath. N. More in the second of Pharmacy, Kolhapur, has completed his graduation, post-graduation, and Ph. D. from Bharati Vidyapeeth's Poona College of Pharmacy, University of Pune. He has 35 years of teaching experience and guided 10 Ph. D. and 61 M. Pharm. Students. He has authored nine books in the pharmacy. He has published 111 international and 41 national research papers in refereed journals. He has worked on various bodies/committees of Shivaji University, Kolhapur. He is a Member of the Academic Council, Board of Research, Chairman of Board of Studies in Pharmacy, Shivaji University, Kolhapur, and also Member of the Board of Studies for Post-graduate studies, Pharm. D. and Research (Faculty of Pharmacy), KLE Academy of Higher Education and Research, Belgavi and Member of Faculty in Pharmacy, Dr. Babasaheb Ambedkar Technological University, Lonere. He has received many Research project grants from UGC, AICTE, CSIR. He is a Life Member of various professional bodies like ISTE, APTI, ISCPT. He is the recipient of Barr. P. G. Patil, Ideal Teacher Award, by Shivaji University, Kolhapur, Vocational Excellence Award, by Rotary Club of Kolhapur Heritage and Bharati Vidyapeeth, Seva GouravPuraskar of Bharati Vidyapeeth Pune.

8. Mr. A. M. Kadam

Title of the book/ chapters: Introduction and Need for Additive Manufacturing in the Medical Industry

ADDITIVE MANUFACTURING WITH MEDICAL **APPLICATIONS**

Edited by Harish Kumar Banga, Rajesh Kumar, Parveen Kalra, Rajendra M. Belokar

Principal Dr. Ramling G. Patrakar Shree Santkrupa College of Pharmacy

Ghogaon, Tal. Karad, Dist. Satara

Page **35** of **38**

Contents

Preface		
Chapter 1	Introduction and Need for Additive Manufacturing in the Medical Industry	
Chapter 2	Insights of 3D Printing Technology with Its Types: A Review15 Ranbir Singh Rooprai and Jaswinder Singh	
Chapter 3	3D Printing Technology: An Overview	
Chapter 4	Use of Additive Manufacturing in Surgical Tools/Guides for Dental Implants	
Chapter 5	Materials for 3D Printing in Medicine: Metals, Polymers, Ceramics, Hydrogels	
Chapter 6	and Manoj Kumar Sinha Materials for 3D Printing in Medicine: Metals, Polymers, Ceramics, Hydrogels	
Chapter 7	Materials for 3D Printing in Medicine: Metals, Polymers, Ceramics and Hydrogels	
	Muhammet Emin Cam, Nazmi Ekren, Oguzhan Gündüz, and Cem Bülent Üstündag	
Chapter 8	Recent Advances and Developments in the Field of Rapid Prototyping for Clinical Applications	
	Theretop single and I alliam sillerasiara	

v

1 Introduction and Need for Additive Manufacturing in the Medical Industry

Prachi Khamkar

Next Big Innovation Labs, Bengaluru, India Ashokrao Mane College of Pharmacy, Peth Vadgaon, India

Atul Kadam

Shree Santkrupa College of Pharmacy, Karad, India Ashokrao Mane College of Pharmacy, Peth Vadgaon, India

CONTENTS

.1	Introd	luctionluction	2	
.2		rical Aspects		
.3		ng-edge Technology		
.4		rocedure of 3D Printing		
.5				
		Tailoring of Dose		
		Patient Compliance Improved		
		New Design in Medicine		
	1.5.4	Integration with Healthcare Network	6	
	1.5.5	Complex Drug-release Profiles	6	
		Implants and Prostheses		
	1.5.7	Bioprinting of Tissues and Organs	7	
	1.5.8	Microneedles	7	
	1.5.9	Improving Medical Education	8	
.6	Case Study of First USFDA-Approved Tablet		9	
.7	Regul	latory Perspective	9	
.8	Chall	enges and Opportunities	10	
.9		lusion		
Refe	rences		11	

DOI: 10.1201/9781003301066-1

First edition published 2022 by CRC Press 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742

and by CRC Press

4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2023 selection and editorial matter, Harish Kumar Banga, Rajesh Kumar, Parveen Kalra Rajendra M. Belokar; individual chapters, the contributors

Reasonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The authors and publishers have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter invented, including photocopying, microfilming, and recording, or in any information storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Kumar Banga, Harish, editor.

Title: Additive manufacturing with medical applications / edited by Harish Kumar Banga, Rajesh Kumar, Parveen Kalra, Rajendra M. Belokar. Description: First edition. | Boca Raton: CRC Press, [2023] | Includes

bibliographical references and index.

Identifiers: LCCN 2022003826 (print) | LCCN 2022003827 (ebook) | ISBN 9781032110776 (hbk) | ISBN 9781032293257 (pbk) | ISBN 9781003301066 (ebk) Subjects: LCSH: Medical instruments and apparatus. | Additive manufacturing. Classification: LCC R856 .A625 2023 (print) | LCC R856 (ebook) | DDC

610.28/4--dc23/eng/20220401

LC record available at https://lccn.loc.gov/2022003826 LC ebook record available at https://lccn.loc.gov/2022003827

ISBN: 978-1-032-11077-6 (hbk) ISBN: 978-1-032-29325-7 (pbk) ISBN: 978-1-003-30106-6 (ebk) DOI: 10.1201/9781003301066

Typeset in Times

by SPi Technologies India Pvt Ltd (Straive)

